Données et concurrence: quand l’algorithme travaille pour les cartels

2466357253_03622550a9_zL’Autorité de la concurrence française et son homologue allemande Bundeskartellamt ont publié la semaine dernière une étude sur l’impact des données sur le droit de la concurrence1, et notamment la capacité des acteurs d’un marché à mettre en oeuvre des pratiques anti-concurrentielles (cartels d’entente sur les prix, par exemple). Les données et surtout les algorithmes posent des questions nouvelles, renforcant d’autant plus la nécessité de penser leur régulation.

Quand on parle de cartels et d’ententes illicites, on imagine sans peine la scène suivante: des messieurs dans des costumes de marque, des cigares à la main, se réunissent dans les salons privés et les bars discrets des grands hôtels. Ils échangent des informations sur le marché et se mettent d’accord sur l’évolution des prix et des volumes.

A vrai dire je n’invente pas grand chose dans cette scène: les industriels des produits frais laitiers ont été condamnés en mars 2015 à une amende de 190 millions d’euros pour avoir procédé ainsi pendant plusieurs années. Dans le relevé de la décision de l’Autorité de la concurrence, on peut notamment y lire – cela ne s’invente pas – que les réunions se tenaient à chaque fois dans un hôtel parisien différent et parfois aussi dans la brasserie « Le chien qui fume » située près de Montparnasse …

Les données et les algorithmes vont donner du fil à retordre aux autorités en charge de la concurrence, nous explique en substance l’étude conjointe des deux autorités européennes. Leur préoccupation rejoint celle du département de la Justice américain, dont l’un des représentants a déclaré l’an dernier:

“We will not tolerate anticompetitive conduct, whether it occurs in a smoke-filled room or over the Internet using complex pricing algorithms. American consumers have the right to a free and fair marketplace online, as well as in brick and mortar businesses »2

 

L’image est destinée à frapper les esprits: les pratiques anti-concurrentielles voient aujourd’hui le jour non plus seulement dans les salons enfumés des hôtels, mais aussi à l’intérieur même du code informatique et des algorithmes. Ces derniers peuvent notamment être programmés pour réagir à des mouvements de prix des concurrents. Ils peuvent même intégrer dans leurs calculs les comportements passés des dits concurrents: comment ont-ils réagi au cours des dernières années ? On retrouve ici la capacité d’apprentissage propre aux traitements de type machine learning.

L’Autorité de la concurrence et le Bundeskartellamt pointent aussi le risque d’une entente non-intentionnelle ou non-coordonnée: les concurrents n’ont plus besoin de se retrouver ou de se mettre d’accord, l’utilisation d’algorithmes de fixation des prix identiques suffit à assurer cette coordination. « Difficult to prove » est l’une des expressions récurrentes de ce document. On voit bien effet qu’il va être très difficile de prouver les intentions d’un cartel qui ne se rencontre jamais, qui n’est jamais en relation, mais qui pourtant aboutit à une réduction de la compétition sur un marché donné !

Il me semble par ailleurs que les données sont un autre élément d’enquête à disposition des autorités de la concurrence. J’ai eu l’occasion il y a deux ans d’accompagner des étudiants de la chaire ESSEC Analytics encadrés par Nicolas Glady. L’un des groupes a ainsi pu travailler sur un cold case: les tarifs des carburants dans les stations-services de France3. Leur travail d’analyse s’est appuyé sur les données historiques proposées en open data par Bercy. On voit bien dans ce cas qu’il y a un intérêt, pour le régulateur, à se doter de capacité à traiter et analyser les données pour trouver de nouveaux indices de comportements anti-concurrentiels (j’utilise à dessein le terme d’indice et non de preuve formelle).

Il faut remettre ces premiers éléments dans une perspective plus large: la régulation des algorithmes et des traitements automatisés. Cette question est le plus souvent abordée sous l’angle de la protection de la vie privée – la Maison Blanche a par exemple pointé récemment le risque de discrimination pour les individus. L’étude de l’Autorité de la concurrence vient à point nommé pour rappeler que l’efficacité de la régulation tient aussi à une meilleure coordination entre le droit de la concurrence et celui qui protège la vie privée des individus (la loi Informatique et Libertés pour notre pays) 4.

— Notes

1 le document est actuellement disponible uniquement en langue anglaise, mais une traduction en français est annoncée.

2 Assistant Attorney General Bill Baer, cité dans « Artificial Intelligence & Collusion: When Computers Inhibit Competition« , Maurice E. Stucke & Ariel Ezrachi, mai 2015, University of Tennessee College of Law

3 Cold case car la condamnation des principaux pétroliers pour entente illicite sur les tarifs pratiqués dans les stations-services d’autoroute a été annulée par la suite.

4 On peut citer en appui la décision rendue concernant GDF. Saisie par un concurrent (Direct Energies), la société GDF a été condamnée à fournir les données de consommation de ses clients à des tiers pour faciliter l’entrée sur le marché de nouveaux concurrents. En vertu des principes de la loi Informatique et Libertés, les clients de GDF devaient donner leur accord explicite à ce transfert. Et en pratique une très grande part d’entre eux l’ont refusé, réduisant d’autant la portée de la décision de l’autorité de la concurrence.

Crédit photo: Fairmont Hotel Lobby, San Jose California par Pargon